
An approach for code suggestion via code
search

Divya Kumari Tankala 1, Dr.T.Venu Gopal 2
1Department of CSE, G.Narayanamma Institute of Technology and Science (for women), Hyderabad, Telangana, India.

2Professor, JNTUHCE, Rajanna Siricilla, Telangana, India

Abstract-Programmers frequently write code that can be similar to existing code which may be written somewhere. An approach could help

programmers to complete partially written code snippets to implement necessary functionality, help to discover extended lines of code to the

partial code which are commonly used statements by other programmers, help to cross-check against similar code written by other

programmers and also helps in fixing common mistakes and errors. Although there are many existing techniques which could potentially be

used to get code suggestions. For example, code-to-code search tools could retrieve relevant code snippets from a corpus using a partial

code snippet as query. However, the challenging task is to locate relevant source code from the large size code repositories and returns lots

of relevant code snippets without removing or aggregating similar-looking ones. So, a new approach for code suggestion can be developed

which takes a code snippet (partial code) as input and which can recommend several succinct source codes. The tool performs manual

filtering from the dataset available and predicts the top five similar codes based on the similarity score.

Index terms: Code recommendation, code suggestion, clone detection, feature based code representation, auto code completer, code search,

code snippet

1. INTRODUCTION

Deep learning systems now excel in most of the domains
like software engineering, health domain etc. while the
programmers wite the logic, if the systems help in auto
completion of logic or some similar code snippets suggested
with respect to the code entered as a query can boost the
productivity of programmer. There are many existing
systems supports such mechanism with IDE (Integrated
development environment) for specific language. But still
there are challenges in recommending code snippets for
partial code written by programmer. Suppose a java
programmer wants to write code to read a file or string then
the developer is familiar with the libraries necessary to write
the code, but they are not quite sure how to write the code
properly to implement functionality with appropriate error
handling and suitable configurations. They write code
snippet shown in Figure 1 as an attempt. The programmer
wants to know the customized way to extend the code so that
the logic gets completed to do specific functionality of
program. Common errors or exceptions can be handled.

There are few techniques for searching of codes, an
approach to define a grammar, which enumerate all
derivations of the grammar, checking each one for
consistency with the examples. This approach can be
combined with pruning based on types and other logical
reasoning (Feser et al., 2015) [1]. Another category of systems
is based on Satisfiability Modulo Theories (SMT) solving.
SMT with SAT-style search with theories like arithmetic and
inequalities. Many program synthesis engines based on SMT
solvers exist, e.g., Sketch (Solar- Lezama, 2008) [2] and
Brahma (Gulwani et al., 2011) [3]. Sirres, et.al., (2018) [4]
Proposed an approach COCABU to address vocabulary
mismatch problem while search for code in the repositories,
focuses to automatically expand developer code search
queries (i.e. free-form queries) to retrieve relevant code
elements. It is built from GitHub and Q&A posts from Stack
OVERFLOW to find the most relevant source code examples
for developer queries. Cocabu builds snippet index and code
index to speed up the performance. User queries are
augmented to accelerate search process by adding relevant
API names, class or method names since search queries may
not include them in general by developers, which lead to get
less accurate search results. The current implementation of
COCABU uses the scoring function implemented in the

InputStreamReader input = new InputStreamReader(system.in);

BufferedReader b = new BufferedReader(input);

FileReader file = new FileReader(String file);

BufferedReader buffer = new BufferedReader(file, int size);

try {

 FileReader file = new FileReader("file.txt"); // Creates a FileReader

 BufferedReader i = new BufferedReader(file); // Creates a

BufferedReader

i.read(array);

System.out.println(array);

 i.close();

 }

 Catch (IOException e) {

 e.getStackTrace();

 }

Figure 3 Another suggested code snippet that shows how to properly

close the buffer reader and handle any potential IOException.

Figure 2 A code suggestion to create a BufferdReader with specified

size internal buffer

Figure 1 Suppose a Java programmer writes this code to read

arguments

674

IJSER © 2021
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 12, Issue 12, December-2021
ISSN 2229-5518

IJSER

Lucene library. This function combines the Boolean Model
(BM) and the Vector Space Model (VSM) to determine the
relevancy of a document given for a user query. Apart from
these search techniques, we analyze the search engines for
code. e, code-to-code search tools [5][6] could retrieve
relevant code snippets from a corpus using a partial code
snippet as query. However, such code-to-code search tools
return lots of relevant code snippets without removing or
aggregating similar-looking ones.

2. MOTIVATION

Code suggestion or recommendation reduce memory
usage and increases the productivity of programmer. Code
suggestions can be provided from different clustering
methods to filter manually to complete the partial code. In
case of code snippets mentioned in figure 1, 2, 3 suggested
reading a file, string, or any argument, closing input stream
and to handle exceptions (if any) etc. So that the programmer
can choose one of them to implement the functionality.

The proposed approach is based on the idea that new
code often resembles code that has already been written
somewhere. Therefore, programmers can benefit from
recommendations from existing code. To substantiate this
claim, we conducted an experiment to measure the similarity
of new code to existing code. This experiment was conducted
on a large codebase in the Hack language. The results are
ranked by similarity score: the percentage of features in the
search query that are also found in the search result. For each
changeset, we took the top-ranked method and its similarity
score. The challenging task is to search for similar code in
large code corpus with a code snippet as a query. So that the
goal of the approach is to find all similar code fragments to
complete partial code and shows only top 5 code suggestions
for the given code query. Few code representations are
recommended based on feature-based matching or ranking
of the code retrieved and clustering methods can also be
used.
2.1 Few existing models and disadvantages

Code to code search tools: Return lots of relevant code
snippets without removing or aggregating similar-looking
ones.
Pattern- completion: Cannot recommend any code outside
the mined patterns.
Code clone detectors: Retrieve code snippets that are almost
identical to a query snippet.

3. PROPOSED METHODOLOGY

Proposed model is a code recommendation tool which takes
input a source code snippet i.e., a partial code. From the
dataset available, the tool is supposed to recommend similar
succinct source codes based on the similarity measure.
Proposed model is expected to perform filtering among the
available source codes present in the dataset. This would
save the time of a software developer from searching across
the Google until a suitable relevant code is found. The major
objectives are

 Can make a search query with the code snippet
itself.

 Fast enough to use in real time and to create
recommendations within seconds even for very
large codebases.

 A code snippet recommended does not simply
come from a single method body, but is generated
from several similar-looking code snippets via
intersection.

The tool takes a partial code snippet as input and checks
whether the given input is valid or not. If the input is not a
partial code, then the tool is expected to give a suggestion or
recommend to enter only for a partial code. Now the tool
looks up for the similar codes relevant to the partial code
given as input and recommends top five codes based on the
similarity measure. If they are not present in the repository
then it would print no results found too to the user as shown
in Figure 4. Based on code snippet entered at left hand side
of figure 5, three code snippets are represented as code
suggestions to read a file or to read command line arguments
for java program. Try- catch statement also can be suggested
along with code recommendations and also suggests code
snippet to close byte stream or character stream classes for a
given code snippet in java.

The proposed approach searches for a small set (e.g.
1000) of method bodies which contain the query code
snippet approximately. A challenge in designing this search
step is that a query snippet, unlike a natural language query,
has structure, which should be taken into account while
searching for code. It then ranks the retrieved code snippets
based on the similarity with query snippet. After retrieving
the similar code snippets, it groups them as cluster, which
fall under same cluster so that it reduces redundancy of code
fragments. Then the query snippet is compared against
cluster and retrieves code fragments from that respective
cluster and suggests them based on ranking. This approach
can help better to boost the productivity of programmer and
saves lots of time. This approach implemented using python
and BigCloneBench dataset which contains Java Programs
and it is evaluated with precision and recall metrics. If it is

Figure 4: Block diagram of proposed methodology for code suggestions

Input a partial code

Search for five

similar codes

(ranking based)

If found
If not
found

Suggest top 5

code snippets Print

result

s not

found

Check whether input is a

partial code

Suggest user to
enter Suitable

partial code

No

Check for similar code

snippets in corpus

Yes

675

IJSER © 2021
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 12, Issue 12, December-2021
ISSN 2229-5518

IJSER

extended to large set of multi-language dataset, we can get
better results using this approach.

4. Conclusion

The proposed approach works based on ranking and clustering

techniques, which able to retrieve similar code fragments using

similarity score over the millions of java programs. If it is

extended to large set of multi-language dataset, we can get

better results using this approach. For a given code snippet

query the proposed model searches in the corpus for method

bodies containing the input snippet and outputs the top 5

recommendations based on similarity score. Though new code

is frequently similar to existing code in a repository, currently

available code search tools do not leverage this similar code to

help programmers add to or improve their code, which would

save the time of a software developer from searching across the

Google until a suitable relevant code is found.

References

[1] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure

transformations from inputoutput examples. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), 2015.

[2] Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, EECS

Dept., UC Berkeley, 2008.

[3] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan.

Synthesis of loop-free programs. In Proceedings of the 32nd ACM

SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), 2011.

[4] Sirres, R., Bissyandé, T.F., Kim, D. et al. Augmenting and structuring user

queries to support efficient free- form code search. Empir Software Eng 23,

2622–2654 (2018).

[5] Kisub Kim, Dongsun Kim, Tegawendé F. Bissyandé, Eunjong Choi, Li Li,

Jacques Klein, and Yves Le Traon. 2018. FaCoY: A Code-to-code Search

Engine. In Proceedings of the 40th International Conference on Software

Engineering (ICSE ’18). ACM, New York, NY, USA, 946–957.

https://doi.org/10.1145/3180155.3180187.

[6] Ken Krugler. 2013. Krugle Code Search Architecture. Springer New York,

New York, NY, 103–120. https://doi.org/10.1007/978- 1-4614-6596-6_6

Figure 5: A sample screen to show the code
recommendations for given code query

Sample code written by programmer Code suggestions for sample code

package myprograms;

import java.io. *;

public class BufferedReaderExample {

 public static void Demo () throws

Exception {

FileReader fr=new

FileReader("input.txt");

BufferedReader br=new

BufferedReader(fr);

}

}

 public static void main(String args[])throws Exception{

 InputStreamReader r=new InputStreamReader(System.in);

 BufferedReader br=new BufferedReader(r);

String name=br.readLine();

char[] array = new char[100];FileReader file = new

FileReader(String file);

BufferedReader input = new BufferedReader(file, int size);

input.read(array);

BufferedReader reader =new BufferedReader(new

InputStreamReader(System.in));

String name = reader.readLine();
int id = Integer.parseInt(reader.readLine());

676

IJSER © 2021
http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 12, Issue 12, December-2021
ISSN 2229-5518

IJSER

	1. Introduction

